

Published on Web 03/01/2006

Structure and Bonding in Yb₄MgGe₄: Yb²⁺/Yb³⁺ Mixed-Valency and Charge Separation

Paul H. Tobash and Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Received January 13, 2006; E-mail: sbobev@chem.udel.edu

The family of intermetallic compounds with a general formula RE_5Tt_4 (RE = Rare-earth; Tt = Tetrel = Si, Ge, i.e., group 14 element) has long been known,¹ however, these materials captured the interest of the solid-state community only very recently.^{2–4} The discovery of the giant magnetocaloric effect, magnetostriction and magnetoresistance in the Gd₅Si₄-Gd₅Ge₄ system prompted more systematic studies of the magnetic and crystallographic transformations in this and related phases.²⁻⁴ Nowadays, it is well understood that the diverse and unique properties of these materials are stemming from the reversible breaking of specific Tt-Tt bonds in the crystal structure.^{3,4} It has been shown that these structural firstorder transformations can be controlled via several parameters such as temperature, pressure, applied magnetic field, and chemical composition.³ The latter presents a powerful tool for fine-tuning properties through substitution of Ge with the isoelectronic but smaller Si for example, as demonstrated with comprehensive work on the $Gd_5(Si_xGe_{1-x})_4$ system.²⁻⁴ Likewise, partial substitution of Ge by electron poorer Ga changes the valence electron count and affects the bond-making/breaking "processes" concomitant with the magnetic ordering.^{4a} These and other possibilities for exchanging Tt elements have been explored in the past.²⁻⁴

With this communication, we report the synthesis and the structural characterization of a new derivative of the RE_5 Tt₄ family, Yb_{5-x}Mg_xGe₄ ($x \approx 1$, Yb₄MgGe₄ hereafter). This phase is a rare example of a substitution of a lanthanide metal (Yb) with a nonmagnetic element, Mg in this instance (Figure 1) within the Gd₅St₄ type.⁵ Similar approach has been recently used in probing the limits of electron-deficiency in related La_{5-x}Ca_xGe₄ and Ce_{5-x}Ca_xGe₄ (3 < x < 3.8) systems.⁶ In the present case however, since the parent Yb₅Ge₄ compound exhibits an intermediate valent behavior,⁷ there exists the possibility for interchanging Mg for either trivalent or divalent Yb, which broadens the possibilities for rational structure alteration. Moreover, unlike all previous reports on RE_5 -Tt₄, where satisfying the Zintl–Klemm concept⁸ has been claimed inessential, our results are best interpreted if one recognizes the tendency of all atoms for closed-shell configuration.

Yb₄MgGe₄ was serendipitously discovered from a reaction of the elements designed to produce the hitherto unknown compound Yb₂MgGe₂ (see Supporting Information). It is the missing member of a large *RE*₂MgGe₂ family of intermetallics, which crystallize with an ordered ternary variant of the tetragonal U₃Si₂ structure.¹ Our interest in that system was sparked by the discovery of Yb₂-InGe₂ and a series of *RE*₂InGe₂ phases (*RE* = Sm, Gd, Tb, Dy, Ho), isotypic with *RE*₂MgGe₂.⁹ According to the Zintl concept,⁸ the electron count in these compounds can be rationalized as (*RE*³⁺)₂(In³⁺)(Ge³⁻)₂(e⁻)₃. Although an oversimplification, bonding in the isostructural *RE*₂MgGe₂ can be rationalized in an identical manner, however there will be a surplus of only two electrons.¹⁰ These speculations do not apply to Yb₂InGe₂ for which experimental data confirm Yb²⁺ (i.e. [Xe]*f*¹⁴) ground state.⁹ Therefore, the formal electron count in Yb₂InGe₂ will lead to one extra electron per

Figure 1. Ball-and-stick representation of the orthorhombic crystal structure of Yb_4MgGe_4 (unit cell outlined). The Yb and Mg atoms are shown as yellow and dark-green spheres, respectively. The two different kinds of Ge atoms are drawn as magenta (Ge1 and Ge2) and blue (Ge3) spheres, respectively.

Figure 2. (a) Top and (b) side views of the basic building fragments of the Yb₄MgGe₄ structure—the hypothetical Yb₂MgGe₂ and YbGe.

formula, while the hypothetical Yb₂MgGe₂ with the same structure would be charge-balanced according to $(Yb^{2+})_2(Mg^{2+})(Ge^{3-})_2$. As a result, this material could present a ground state where the Yb^{2+/} Yb³⁺ configurations might compete, thereby leading to interesting physical properties.

All attempts to make Yb₂MgGe₂ have proven unsuccessful and yielded Yb₄MgGe₄ as a major product. This is not surprising if one realizes that both structures are closely related. The tetragonal Yb₂MgGe₂ (ordered U₃Si₂ type) can be viewed as flat infinite [MgGe₂]^{4–} layers, which are stacked above one another, with Yb cations between them. The [MgGe₂]^{4–} layers, in turn, can be regarded as [Ge₂]^{6–} dimers, "stitched" together through Mg–Ge interactions (Figure 2a). The same motifs are present in the structure of Yb₄MgGe₄, although their arrangement is slightly different. As can be seen from Figure 1, the flat [MgGe₂]^{4–} layers propagate in

Figure 3. Magnetic susceptibility $\chi(T)$ plot in an applied magnetic field of 500 Oe. (Inset) Inverse magnetic susceptibility $\chi^{-1}(T)$ plot. Solid lines indicate fits to the Curie-Weiss law, respectively.

two dimensions (a and c), but they are not eclipsed as in Yb_2MgGe_2 . Instead, the layers are offset by a distance of $1/4 \cdot a$ with respect to one another and are interspaced with layers of [Ge2]6- dimers and Yb cations filling the space between them (Figure 1).¹¹ The corresponding Ge-Ge distances of 2.557(2) and 2.600(2) Å, respectively, indicate strong covalent character for these bonds and compare well with those reported for RE2MgGe2 and RE2InGe2.9,10

Following this formalism, the structure of Yb₄MgGe₄ can be rationalized as an intergrowth of imaginary Yb2MgGe2 and YbGe lattices (Figures 1 and 2). If we extrapolate the data from Yb₂-InGe₂ and assume that Yb ions in the Mg analogue are also divalent, to achieve charge balance in Yb_4MgGe_4 , the Yb ions in the YbGe moiety will have to be trivalent according to [(Yb²⁺)₂(Mg²⁺)- $(Ge^{3-})_2$][(Yb³⁺)(Ge³⁻)]₂. Indeed, more careful analysis of the coordination of the cation sites shows that the distances of Yb1 to its closest neighbors are almost 0.2 Å shorter than the distances of Yb2 to the nearest germanium atoms. Based on the above, a plausible conclusion is that Yb₄MgGe₄ is a heterogeneous mixedvalent compound, i.e. a system where one of the two Yb sites (Yb2) has atoms in nonmagnetic Yb²⁺ configuration, whereas the Yb³⁺ cations occupy the Yb1 site. Furthermore, since the ionic radius of Yb³⁺ is very similar to that of Mg²⁺, one might speculate that additional Mg substitutions (if possible without a structural change) will lead to the displacement of Yb³⁺, thereby creating a possibility for continuous variations of the magnetic properties through Mg^{2+/} Yb³⁺ exchange. Preliminary results confirm that in the Mg-richer systems Yb1 is the site that takes up the extra Mg-refinements on Yb_{3,76}Mg_{1,24}Ge₄ and Yb_{3,45}Mg_{1,55}Ge₄ from single-crystal data provide unequivocal evidence for a 88(1):12(1) statistical mixture of Yb and Mg on the Yb1 site in the former and 72(1):28(1) in the latter (see Supporting Information). These results are in agreement with the magnetic properties of Yb₄MgGe₄ and Yb_{3.76}Mg_{1.24}Ge₄.

The molar magnetic susceptibility ($\chi = M/H$, normalized per Yb) of polycrystalline Yb₄MgGe₄ is shown in Figure 3. The compound does not order magnetically down to 10 K, and the temperature dependence $\chi(T)$ in the interval 10–325 K indicates a Curie–Weiss paramagnetic behavior. The $\chi^{-1}(T)$ data above 40 K were linearly fit (inset Figure 3), which resulted in an effective moment $\mu_{\rm eff} = 2.7 \ \mu_{\rm B}/{\rm Yb}$. This value is almost 60% of the value expected for free-ion Yb³⁺ (f^{13} with $g_J[J(J + 1)]^{1/2} = 4.54 \mu_B$),¹² in good agreement with the mixed valency reported for Yb₅Si₄-Yb₅Ge₄ pseudobinary systems.⁷ Nevertheless, departures from the straight line are clearly seen below ca. 30 K; therefore, the data were fit with the modified Curie–Weiss law $\chi(T) = \chi_0 + C/(T - C)$ $\theta_{\rm p}$), where $\chi_{\rm o}$ is the sum of the temperature-independent contributions, e.g. van Vleck paramagnetism, paramagnetism due to conduction electrons, and core–electron diamagnetism, $C = N_A \mu_{eff}^2/2$ $3k_{\rm B}$ is the Curie constant, and $\theta_{\rm p}$ is the Weiss temperature.¹² A nonlinear least-squares fit to this equation resulted in $\chi_0 = 9 \times$ 10^{-4} emu/mol, $\theta_{\rm p} = -11$ K, and an effective moment of 2.3 $\mu_{\rm B}$ / Yb. Similar analysis for the Mg-richer Yb3,76Mg1.24Ge4 gives a moment of 2.2 $\mu_{\rm B}$ /Yb, indicating fewer Yb³⁺ ions (see Supporting Information). This means that the ratio of magnetic Yb^{3+} to nonmagnetic Yb^{2+} in the lattice of Yb_4MgGe_4 is almost 1:1, while that in Yb_{3.76}Mg_{1.24}Ge₄ is 0.9:1, which corroborates the analysis based upon bond distances: Yb1 is trivalent, while Yb2 is divalent (above). In that regard, Yb₄MgGe₄ is rather unusual compared to other Yb-intermetallics where intermediate valency has been reported—in those systems, the energies of the $[Xe]f^{13}$ and $[Xe]f^{14}$ configurations are close, and the valence of Yb atoms occupying a single site can oscillate between the two states.

Since the structure of Yb₄MgGe₄ is robust and can adapt slightly higher or lower Mg concentrations and since Mg2+ cations substitute for magnetic Yb3+, this system provides an attractive way for tunable valence transitions via controlled structure modifications. Such approach has a high potential for discovering new compounds with unique physical properties, and more designed syntheses in the related *RE*-Mg-Ge systems are currently underway.

Acknowledgment. Dedicated to Professor John D. Corbett on occasion of his 80th birthday. S.B. acknowledges financial support from the University of Delaware Research Foundation (UDRF) and from the University of Delaware through a start-up grant.

Supporting Information Available: Experimental details, crystallographic tables, combined single-crystal X-ray crystallographic information file (CIF), and additional magnetic susceptibility data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Villars, P., Calvert, L. D., Eds. Pearson's Handbook of Crystallographic Data for Intermetallic Compounds, 2nd ed.; American Society for Metals: Materials Park, OH, 1991.
- (a) Pecharsky, V. K.; Gschneidner, K. A., Jr. Phys. Rev. Lett. 1997, 78, (4) Adv. (b) Choe, W.; Pecharsky, V. K.; Pecharsky, A. O.; Gschneidner, K. A., Jr.; Young, V. G.; Miller, G. J. *Phys. Rev. Lett.* **2000**, *84*, 4617.
- (a) Morellon, L.; Algarabel, P. A.; Ibarra, M. R.; Blasco, J.; García-Landa, (a) MORTHON, L. Algarabet, F. A. Ibarta, M. K. Blasco, J. Garcia Landa, B. Phys. Rev. B. **1998**, 58, R 14721. (b) Pecharsky, A. G., O., Gschneidner, K. A., Jr. J. Alloys Compd. **2002**, 344, 362. (c) Choe, Pecharsky, A. O.; Wörle, M.; Miller, G. J. Inorg. Chem. 2003, 42, 8223
- (4) (a) Mozharivskyj, Y.; Choe, W.; Pecharsky, A. O.; Miller, G. J. J. Am. *Chem. Soc.* **2003**, *125*, 15183. (b) Mozharivskyj, Y.; Pecharsky, A. O.; Pecharsky, V. K.; Miller, G. J. J. Am. Chem. Soc. **2005**, *127*, 317.
- (5) There is an ongoing discussion whether the orthorhombic Gd₅Si₄ and Sm₅-Ge4 types are identical. Although the two are isotypic (ref 1), the Tt-Tt bonding arrangements in both are markedly different.
- (6) Wu, L.-M.; Kim, S.; Seo, D.-K. J. Am. Chem. Soc. 2005, 127, 15682.
 (7) Ahn, K.; Tsokol, A. O.; Mozharivskyj, Yu.; Gschneidner, K. A., Jr.; Pecharsky, V. K. Phys. Rev. B. 2005, 72, 054404-1.
 (8) (a) Zintl, E. Angew. Chem. 1939, 52, 1. (b) Kauzlarich, S. M., Ed. VGW
- Chemistry, Structure and Bonding of Zintl Phases and Ions; VCH Publishers: New York, 1996 and references therein.
- Tobash, P. H.; Lins D.; Bobev, S.; Lima, A.; Hundley, M. F.; Thompson, J. D.; Sarrao, J. L. Chem. Mater. 2005, 17, 5567. (10) Choe, W.; Miller, G. J.; Levin, E. M. J. Alloys Compd. 2001, 329, 121.
- (11) Yb₄MgGe₄ can also be described as a ternary derivative of Yb₅Ge₄, where the Yb atoms are located in the corners of cubes and trigonal prisms with Mg occupying the cubic voids and the Ge1 and Ge2 at the centers of the trigonal prisms. The other atoms (Ge3) form Ge pairs, which are connecting the slabs along the b-direction.
- (12) Smart, J. S. Effective Field Theories of Magnetism; Saunders: Philadelphia, PA, 1966.

JA0601383